

- Optical front communication port (ANSI type 2)
- Up to one RS232 and RS485 port (on request)
- Communication protocol: MODBUS-RTU
- MODBUS TCP/IP Ethernet port (on request)
- BACnet-IP over Ethernet port (on request)
- BACnet MS/TP over RS485, BTL approved (on request)
- Profibus DP V0 port, PROFIBUS Nutzerorganisation e.V. approved (on request)
- Up to 6 digital inputs for tariff selection, "dmd" synch, gas/water (hot-cold) and remote heating metering (on request)
- Up to 8 static outputs (pulse, alarm, remote control) (on request)
- Up to 6 relay outputs (pulse, alarm, remote control) (on request)
- Up to 16 freely configurable alarms with OR/AND logic linkable with up to either 4 relay outputs or up to 6 static outputs (on request)
- Up to 4 analogue outputs (+20mA, +10VDC) (on request)
- Class 0.5S (kWh) according to EN62053-22
- Class 2 (kvarh) according to EN62053-23
- Accuracy $\pm 0.2 \%$ RDG (current/voltage)
- Instantaneous variables readout: 4x4 DGT
- Energies readout: 9+1 DGT
- System variables: VLL, VLN, A, VA, W, var, PF, Hz, phase-sequence, phase-asymmetry and phaseloss.
- Single phase variables: VLL, VLN, AL, An (calculated or real depending on the option), VA, W, var, PF
- Both system and singles phase variables with average, max and min calculation
- Direct neutral current measurement (on request)
- Harmonic analysis (FFT) up to the 32nd harmonic (current and voltage) with harmonics source detection (imported/exported, only via serial port)
- Energy measurements (imported/exported): total and partial kWh and kvarh (inductive and capacitive) or based on 6 different tariffs (on request)
- Energy measurements according to ANSI C12.20, CA 0.5, ANSI C12.1
- Gas, cold water, hot water, remote heating measurements (on request)
- Run hours counter (8+2 DGT)
- Real time clock function
- Data stamping of up to 10,000 events: alarm, min, max, digital input status, digital output status, resets, programming changing (on request)
- Application adaptable display and programming procedure (Easyprog function)
- Universal power supply:

24-48 VDC/AC, 100-240 VDC/AC

- Front dimensions: $96 \times 96 \mathrm{~mm}$
- Front protection degree: IP65, NEMA4x, NEMA12

Product Description

Three-phase smart power analyzer with built-in application configuration system and LCD data displaying. Particularly recommended for the measurement of the main electrical variables.
WM40 is based on a modular housing for panel mounting with IP65 (front) protection degree. Moreover the analyzer can be provided with digital outputs that can be either for pulse proportional to the active and reactive total, partial and tariff energy being measured or/and for alarm outputs.

The instrument is equipped with optical communication port, further I/O's such as: RS485/RS232, Ethernet, BACnet-IP, BACnet MS/TP or Profibus DP V0 communication ports, pulse and alarm outputs and 6 digital inputs or analogue outputs are available on request. Parameters programming and data reading can be easily performed by means of UCS (Universal Configuration Software).

CARLO GAVAZZI

How to order
Model
Range code
System
Power Supply
A Inputs/Outputs
B Inputs/Outputs
Communication and data
Option
Type Selection

Range codes

AV4: 3×220 (380)..
$3 \times 400(690) \mathrm{V} 1(2) \mathrm{A}$
Vin: 220 to 400
VLı: 380 to 690
AV5: 3x220(380)...
$3 \times 400(690) \mathrm{V} 5(6) \mathrm{A}$
$V_{\text {Ln: }} 220$ to 400
VLL: 380 to 690
AV6: $3 \times 57.7(100)$..
3x133(230)V 5(6)A
$V_{\text {Ln: }} 57.7$ to 133
VLL: 100 to 230
AV7: $3 \times 57.7(100)$..
$3 \times 133(230) \mathrm{V}$ 1(2)A
$V_{\text {Ln: }} 57.7$ to 133
Vㄴ.: 100 to 230

B Inputs/Outputs

XX: none
A2: Dual channel 20mADC output
V2: Dual channel 10VDC output
TP: One temperature and one process signal input
CT: Direct neutral current measurement + One temperature and one process signal input

System

3: balanced and unbalanced load: 3-phase, 4-wire; 3-phase, 3-wire; 2-phase, 3-wire; 1-phase, 2-wire

Communication and data S .

XX: none
S1: RS485/RS232 port
S3: RS485/RS232 port with data stamping
E2: Ethernet / Internet port
E3: Ethernet / Internet port with data stamping
B1: BACnet (IP) over Ethernet
B2: BACnet (IP) over Ethernet with data stamping
B3: BACnet (MS/TP) over RS485
B4: BACnet (MS/TP) over RS485 with data stamping
P1: Profibus DP/V0 port
P2: Profibus DP/V0 port with data stamping

Power supply
H: $\quad 100-240+/-10 \%$ (90 to 255) VDC/AC ($50 / 60 \mathrm{~Hz}$)
L: 24-48 +/-15\%
(20 to 55) VDC/AC
($50 / 60 \mathrm{~Hz}$)

Options

XX: none

A Inputs/Outputs

XX: none
R2: Dual channel relay output
O2: Dual channel static output
A2: Dual channel 20mADC output
V2: Dual channel 10VDC output
R4: Advanced six channel digital inputs + four channel relay outputs + OR/AND alarm logic management
06: Advanced six channel digital inputs + six channel static outputs + OR/AND alarm logic management

Position of modules and combination

Ref	Description	Main features	Part number	Pos. A	Pos. B	Pos. C
1	WM40 base provided with display, power supply, measuring inputs, optical front communication port.	- Inputs/system: AV5.3 - Power supply: H	WM40 AV5 3 H			
2		- Inputs/system: AV6.3 - Power supply: H	WM40 AV6 3 H			
3		- Inputs/system: AV4.3 - Power supply: H	WM40 AV4 3 H			
4		- Inputs/system: AV7.3 - Power supply: H	WM40 AV7 3 H			
5		- Inputs/system: AV5.3 - Power supply: L	WM40 AV5 3 L			
6		- Inputs/system: AV6.3 - Power supply: L	WM40 AV6 3 L			
7		- Inputs/system: AV4.3 - Power supply: L	WM40 AV4 3 L			
8		- Inputs/system: AV7.3 - Power supply: L	WM40 AV7 3 L			
9	Dual relay output (SPST)	- 2-channel - Alarm or/and pulse output	M O R2	X		
10	Dual static output (AC/DC Opto-Mos)	- 2-channel - Alarm or/and pulse output	M 002	X		
11	Dual analogue output (+20mADC)	- 2-channel	M O A2	X	X	
12	Dual analogue output (+10VDC)	- 2-channel	M O V2	X	X	
13	RS485 / RS232 port module	- Max. 115.2 Kbps	M C 485232			X
14	Ethernet/TCP IP port module	- RJ45 10/100 BaseT	M C ETH			X
15	BACnet-IP port module	- Based on Ethernet bus	MCBACIP			X
16	BACnet MS/TP port module	- Over RS485	MCBACMS			X
17	BACnet MS/TP port module	- Over RS485 - Data Stamping	MCBACMSM			X
18	Combined digital inputs and Relay outputs (SPST)	- 6-input channels - 4-output channels - Complex tariff management - OR/AND logic management	M F I6R4		X	
19	Combined digital inputs and Static outputs (AC/DC Opto-Mos)	- 6-input channels - 6-output channels - Complex tariff management. - OR/AND logic management	M F 1606		X	
20	RS485 / RS232 port module with integrated Memory	- Max. 115.2 Kbps - Data stamping	MC485 232 M			X
21	Ethernet port module with integrated Memory	- RJ45 10/100 BaseT - Data Stamping	M C ETH M			X
22	BACnet over IP port module with integrated Memory	- Based on Ethernet bus - Data Stamping	M C BAC IP M			X
23	Temperature + Process signal measurements $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$	- "Pt" type input - 20mA input	M A T P		X	
24	Direct neutral current measurement + Temperature + Process signal measurements (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$)	- As above + signal input like a common current input (CT ratio etc.)	MATPN		X	
25	Profibus module	- \quadProfibus DP V0 - Over RS485	M C P B			X
26	Profibus module with integrated memory	Profibus DP V0 Over RS485 Data stamping	M C P B M			X

NOTE: The position of the modules shall respect the sequence A-B-C. Possible arrangements are $\mathrm{M}, \mathrm{M}-\mathrm{A}, \mathrm{M}-\mathrm{B}, \mathrm{M}-\mathrm{C}, \mathrm{M}-\mathrm{A}-\mathrm{B}, \mathrm{M}-\mathrm{A}-\mathrm{C}, \mathrm{M}-\mathrm{B}-\mathrm{C}$ and $\mathrm{M}-\mathrm{A}-\mathrm{B}-\mathrm{C}$ where " M " is the basic module (WM40-96).

It is possible to use the WM40-96 without any additional module as a simple indicator.

CARLO GAVAZZI

Input specifications

Rated inputs	System type: 1, 2 or	Reactive power	From 0.02In to
	3-phase		$0.05 \mathrm{In}, \operatorname{sen} \varphi 1:$
Current type	Galvanic insulation by		$\pm(1.5 \%$ RDG +1 DGT)
Current range (by CT)	AV5 and AV6: 5(6)A		om 0.05In to Imax, sen φ
	AV4 and AV7: 1(2)A		From 0.05 In to
Voltage (by direct connection or VT/PT)			$0.1 \mathrm{In}, \operatorname{sen} \varphi 0.5 \mathrm{~L} / \mathrm{C}$: $\pm(1.5 \% R D G+1$ DGT)
	AV4, AV5: 3×220 (380)... 3×400 (690) V;		From 0.1In to Imax, $\operatorname{sen} \varphi$ 0.5 L/C: $\pm(1 \% R D G+1 D G T)$
	$\begin{aligned} & \text { AV6, AV7: } 3 \times 57.7(100) \ldots \\ & 3 \times 133(230) \vee \end{aligned}$	Active energy	Class 0.5 S according to EN62053-22, ANSI
Accuracy (Display + RS485) (@23 ${ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)			C12.20.
	$\begin{aligned} & 0.01 \mathrm{In}=0.05 \mathrm{~A}(\mathrm{AV} 5, \mathrm{AV6}- \\ & \mathrm{kWh}, \mathrm{PF}=1) \end{aligned}$	Reactive energy	Class 2 according to EN62053-23, ANSI C12.1.
	$0.01 \mathrm{ln}=0.01 \mathrm{~A}(\mathrm{AV} 4, \mathrm{AV} 7$ -	Start up current AV5, AV6	5 mA
	kWh, $\mathrm{PF}=1$)	Start up current AV4, AV7	1 mA
	$\begin{aligned} & 0.05 \mathrm{In}=0.25 \mathrm{~A}(\mathrm{AV} 5, \mathrm{AV} 6- \\ & \mathrm{kWh}, \mathrm{PF}=1) \end{aligned}$	Energy additional errors	According to EN62053-22, ANSI C12.20,
	$\begin{aligned} & 0.05 \mathrm{In}=0.05 \mathrm{~A}(\mathrm{AV} 4, \mathrm{AV7}- \\ & \mathrm{kWh}, \mathrm{PF}=1) \end{aligned}$	Influence quantities	according to EN62053-23, ANSI C12 1
	In: see below, Un: see below	Total Harmonic Distortion (THD)	$\pm 1 \%$ FS (FS: 100\%)
AV4 model	In: 1A, Imax: 2A; Un: 220		AV4: Imin: 5mARMS; Imax: 3A. Umin 30VRMS
	to 400VLN (380 to 690VLL)		Umax: 679Vp
AV5 model	In: 5A, Imax: 6A; Un: 220 to 400 VLN (380 to 690 VLL)		AV5: Imin: 5mARMS; Imax
AV6 model	In: 5A, Imax: 6A; Un:		15Ap; Umin: 30VRMS; Umax: 679Vp
	57.7 to 133 VLN (100 to 230VLL)		AV6: Imin: 5mARMS; Imax 15Ap. Umin 30VRMS.
AV7 model	In: 1A, Imax: 2A; Un: 57.7 to 133 VLN (100 to 230 VLL)		15Ap; Umin: 30VRMS; Umax: 204Vp
Current AV4, AV5, AV6, AV7 models	From 0.01 In to 0.05 In :		AV7: Imin: 5mARMS; Imax 3A; Umin: 30VRMS; Umax: 204Vp
	From 0.05In to Imax: $\pm(0.2 \%$ RDG $+2 \mathrm{DGT})$	Total Demand Distortion (TDD)	$\pm 1 \%$ FS (FS: 100\%) Imin: 5mA RMS; Imax: 15Ap
Phase-neutral voltage	RDG +1DGT)	K-Factor and factor K	\pm (0.5\%RDG+1DGT)
Phase-phase voltage	In the range Un: \pm (0.5\%	Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	RDG +1DGT) Un - 20%, Un +15\%	Sampling rate	3200 samples/s @ 50Hz, 3840 samples/s @ 60Hz
Voltage tolerance Frequency	$\text { RDG + } 1 \text { DGT), }$	Measurements	See "List of the variables
	From 65 to 340 Hz $\pm(0.05 \%$ RDG + 1 DGT).	Method	that can be connected to:" TRMS measurements of
	From 340 to 440 Hz	Coupling type	distorted wave forms. By means of CT's
Active and Apparent power	From 0.01In to 0.05In, PF	Crest factor	AV5, AV6: ≤ 3
	1: $\pm(1 \% \mathrm{RDG}+1 \mathrm{DGT})$		(15A max. peak)
	From 0.05In to Imax		AV4, AV7: ≤ 3
	PF 0.5L, PF1, PF0.8C:		(3A max. peak)
	$\pm(0.5 \%$ RDG +1 DGT)		
Power Factor	$\pm[0.001+0.5 \%$ (1.000 - "PF		
	RDG")]		

Input specifications (cont.)

Current Overloads	
Continuous (AV5 and AV6)	$6 A, @ 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Continuous (AV4 and AV7)	2A, @ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
For 500 ms (AV5 and AV6)	$120 \mathrm{~A}, @ 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
For 500ms (AV4 and AV7)	$40 \mathrm{~A}, @ 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Voltage Overloads	
Continuous	1.2 Un
For 500ms	2 Un

Input impedance	
$400 \mathrm{VL}-\mathrm{L}(\mathrm{AV} 4$ and AV 5$)$	$>1.6 \mathrm{M} \Omega$
$208 \mathrm{VL}-\mathrm{L}(\mathrm{AV6}$ and AV 7$)$	$>1.6 \mathrm{M} \Omega$
$5(6) \mathrm{A}(\mathrm{AV5}$ and AV6)	$<0.2 \mathrm{VA}$
$1(2) \mathrm{A}(\mathrm{AV} 4$ and AV7)	$<0.2 \mathrm{VA}$

Frequency $\quad 40$ to 440 Hz

CARLO GAVAZZI

Output specifications

Relay outputs (M O R2)		Signal retransmission	Total: +kWh, -kWh, +kvarh,
Physical outputs	2 (max. 1 module per instrument)		-kvarh. Partial: +kWh, -kWh,
Purpose	For either alarm output or pulse output	Pulse type	+kvarh, -kvarh.
Type	Relay, SPST type AC 1-5A @ 250VAC; AC 15-1A @ 250VAC		to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse. The above listed variables can be connected
Configuration	By means of the front keypad or UCS software	Pulse duration	to any output. 30 ms (ON), $\geq 30 \mathrm{~ms}$
Function	The outputs can work as alarm outputs but also		(OFF), according to EN62053-31
	as pulse outputs, remote controlled outputs, or in	Remote controlled outputs	The activation of the outputs is managed
Alarms	Up alarm and down alarm and windows alarm (in and out) linked to the virtual alarms, other details see Virtual alarms	Insulation	through the serial communication port See "Insulation between inputs and outputs" table
		20 mA analogue outputs (M O A2)	
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".	Number of outputs	2 per module (max. 2 modules per instrument)
Pulse		Accuracy	
Signal retransmis	Total: +kWh, -kWh, +kvarh, -kvarh.	(@ $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$)	$\pm 0.2 \%$ FS
Pulse type	Partial: +kWh, -kWh,	Range Configuration	By means of the front key-
	Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse. The above listed variables can be connected to any output.	Signal retransmission	pad or UCS software The signal output can be connected to any instantaneous variable available in the table "List
Pulse duration	30 ms (ON), $\geq 30 \mathrm{~ms}$ (OFF), according to EN62053-31		connected to". Programmable within
Remote controlled outputs	The activation of the outputs is managed through the serial communication port See "Insulation between inputs and outputs" table	Scaling fa	the whole range of retransmission.
		Response time	$\leq 400 \mathrm{~ms}$ typical (filter excluded)
Insulation		Ripple	$\leq 1 \%$ (according to IEC 60688, EN 60688)
Static outputs (M O O2)	Opto-Mos type	Load	$\leq 600 \Omega$
Physical outputs	2 (max. 1 module per instrument)	Insulation	See "Insulation between inputs and outputs" table
Purpose	For either pulse output or alarm output	10VDC analogue outputs (M O V2)	
Signal	Von:2.5VAC/DC/max. 100 mA Voff: 42VDC max.	Number of outputs	2 per module (max. 2 modules per instrument)
Configuration	By means of the front keypad or UCS software	Accuracy (@ $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$)	$\pm 0.2 \% \mathrm{FS}$
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in any other combination.	Range	0 to 10 VDC
		Configuration	By means of the front keypad or UCS software
		Signal retransmission	The signal output can be connected to any
Alarms	Up alarm and down alarm linked to the virtual alarms, other details see Virtual alarms		instantaneous variable available in the table "List of the variables that can be connected to".
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Setpoint on-time delay: "0 s".	Scaling factor	Programmable within
Pulse			

Output specifications (cont.)

	the whole range of retransmission.
Response time	$\leq 400 \mathrm{~ms}$ typical (filter excluded)
Ripple	$\leq 1 \%$ (according to IEC 60688, EN 60688)
Total temperature drift	≤ 350 ppm/ ${ }^{\circ} \mathrm{C}$
Load	$\geq 10 \mathrm{k} \Omega$
Insulation	See "Insulation between inputs and outputs" table
RS485 serial port (M C 485232 on request)	
RS485	
Type	Multidrop, bidirectional (static and dynamic variables)
Connections	2-wire
	Max. distance 1000 m , termination directly on the module
Addresses	247, selectable by means of the front key-pad
Protocol	MODBUS/JBUS (RTU)
Data (bidirectional)	
Dynamic (reading only)	System and phase variables: see table "List of variables..."
Static (reading and writing only)	All the configuration parameters.
Data format	1 start bit, 8 data bit, no/ even/odd parity, 1 stop bit
Baud-rate	Selectable: $9.6 \mathrm{k}, 19.2 \mathrm{k}$, $38.4 \mathrm{k}, 115.2 \mathrm{k} \mathrm{bit} / \mathrm{s}$
Driver input capability	$1 / 5$ unit load. Maximum 160 transceivers on the same bus.
Note	With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed. In this case just the data reading is allowed
Insulation	See "Insulation between inputs and outputs" table
RS232 port (on request)	
Type	Bidirectional (static and dynamic variables)
Connections	3 wires. Max. distance 15m
Protocol	MODBUS RTU /JBUS
Data (bidirectional)	
Dynamic (reading only)	System and phase variables: see table "List of variables..."
Static (reading and writing only)	All the configuration parameters
Data format	1 start bit, 8 data bit, no/ even/odd parity, 1 stop bit
Baud-rate	Selectable: 9.6k, 19.2k,

Note	$38.4 \mathrm{k}, 115.2 \mathrm{k} \mathrm{bit} / \mathrm{s}$ With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed. In this case just the data reading is allowed
Insulation	See "Insulation between inputs and outputs" table
Module with data stamping and event recording memory	
(M C 485232 M)	
Event stamping	
Type of data	Alarm, min, max, digital input status, digital output status as remote control, resets.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of events	Up to 10,000
Data management type	FIFO
Data stamping	
Type of data	Any measured variable can be stored in the memory.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of variables	Up to 19 different type of variables can be stored.
Time interval	From 1 minute up to 60 minutes.
Data management type	FIFO
Memory type	Data flash
Ethernet/Internet port (M C ETH on request)	
Protocols	Modbus TCP/IP
IP configuration	Static IP / Netmask / Default gateway
Port	Selectable (default 502)
Client connections	Max 5 simultaneously
Connections	RJ45 10/100 BaseTX Max. distance 100 m
Data (bidirectional)	
Dynamic (reading only)	System and phase variables: see table "List of variables..."
Static (reading and writing only)	All the configuration parameters.
Note	With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed. In this case just

Output specifications (cont.)

Output specifications (cont.)

Output specifications (cont.)

and event recording memory (MCPBM)	
Event stamping	
Type of data	Alarm, min, max, digital input status, digital output status as remote control, resets.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of events	Up to 10,000
Data management type	FIFO
Data stamping	
Type of data	Any measured variable can be stored in the memory.
Stamping format	Date (dd:MM:yy) and hour (hh:mm:ss) reference.
Number of variables	Up to 19 different type of variables can be stored.
Time interval	From 1 minute up to 60 minutes.
Data management type	FIFO
Memory type	Data flash
Approval	PROFIBUS Nutzerorganisation e.V.
Relay Output and Digital	
Input (M F I6 R4 on request)	
Physical outputs	4 (max. 1 module per instrument)
Purpose	For either pulse output or alarm output
Type	Relay, SPST type AC 1-5A @ 250VAC; AC 15-1A @ 250VAC
Configuration	Only by means of the programming software UCS. In this latter case using either the serial communication port or the front optical port.
Function	The outputs can work as advanced alarm outputs and as remote controlled outputs, or in any other combination.
Standard alarm modes	Up alarm, down and window alarm. There is also the possibility to remote the control of the outputs: the activation of the outputs is managed through the serial communication port (in this case the local alarms are disabled).
Advanced alarm modes	"OR" or "AND" or "OR+AND" functions (see "Alarm parameter and logic" page). Freely programmable on up to 16

Controlled variables	alarms
	The alarms can be connected to any variable available in the table "List of the variables that can be connected to"
Set-point adjustment	From 0 to 100% of the display scale
Hysteresis	From 0 to full scale
On-time delay 0 to 255 s	
Output status	Selectable: normally de-energized or normally energized
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".
Digital inputs	
Number of inputs	6 (voltage-free contacts)
Purpose	Contact status reading. "dmd" measurements synchronisation and clock synchronisation. Energy tariff selection. Utility meter counters. Trip counter. Interfacing with external energy meters (+kWh, +kvarh, -kWh, -kvarh).
Input frequency	20 Hz max, duty cycle 50\%
Prescaler adjustment	From 0.1 to $999.9 \mathrm{~m}^{3}$ or kWh/pulse
Open Contact voltage	$\leq 3.3 \mathrm{VDC}$
Closed Contact current	<1mADC
Contact resistance	$\leq 300 \Omega$ closed contact $\geq 50 \mathrm{k} \Omega$ open contact
Input voltage	0 to 0.5VDC: LOW 2.4 to 25VDC: HIG
Working mode	- Total and partial energy meters (kWh and kvarh) without digital inputs; - Total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2-t3-t4-t5-t6), W dmd synchronisation (the synchronisation is made every time the tariff changes) and GAS (m^{3}) or WATER (hot/cold $/ \mathrm{m}^{3}$) or remote heating (kWh) meters; - Total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2), W dmd synchronisation (the synchronisation is made independently of the tariff selection) and GAS (m^{3}) or WATER (hot/cold $/ \mathrm{m}^{3}$) or remote heating (kWh)

Output specifications (cont.)

Insulation	meters; - Total energy (kWh, kvarh) and GAS, WATER (hot-cold m^{3}) and remote heating meters (3 choices only). - Remote alarm reset. - Trip counter of installation protection. - Direct measurements for the power quality analysis (LV or MV/HV connection); - Indirect energy and power measurements by means of external energy meters (LV or MV/HV connection); - Direct measurements for the instantaneous variables (LV connection) and indirect measurements for the energy variables (LV or MV/HV). By means of opto-mos See "Insulation between inputs and outputs" table.
Opto-mos Output and Digital Input (M F I6 O6 on request) Static Outputs	
Physical outputs	6 (max. 1 module per instrument)
Purpose	For either pulse output or alarm output
Type of outputs	Opto-Mos
Signal	VON: $2.5 \mathrm{VDC} / \mathrm{max} .100 \mathrm{~mA}$ VOFF: 42VDC
Function	The outputs can work as pulse outputs, but also as alarm outputs, remote controlled outputs, or in any other combination.
Signal retransmission	Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh, +kvarh, -kvarh Tariff: $+\mathrm{kWh},-\mathrm{kWh},+k v a r h$, -kvarh.
Pulse type	Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse. Outputs connectable to the energy meters (kWh / kvarh)
Pulse duration	30 ms (ON), $\geq 30 \mathrm{~ms}$ (OFF), according to EN62053-31
Advanced tariff management	
No. of tariffs	Up to 6
No. of total energies	Up to 4 (+kWh, -kWh,

Data format	+kvarh, -kvarh) 9-DGT for Total and partial/tariff, gas and water metering.
Digital inputs	
Number of inputs	6 (voltage-free contacts)
Purpose	Contact status reading. "dmd" measurements
	synchronisation and clock
	synchronisation. Energy
	tariff selection. Utility meter counters. Trip counter.
	Remote input. Interfacing with external energy meters (+kWh, +kvarh, $-k W h, ~-k v a r h)$.
Input frequency	20 Hz max, duty cycle 50%
Prescaler adjustment	From 0.1 to $999.9 \mathrm{~m}^{3}$ or
	kWh/pulse
Open Contact voltage	$\leq 3.3 \mathrm{VDC}$
Closed Contact current	<1mADC
Contact resistance	$\leq 300 \Omega$ closed contact
	$\geq 50 \mathrm{k} \Omega$ open contact
Input voltage	0 to 0.5VDC LOW
	2.4 to 25VDC HIG
Working mode	- Total and partial energy meters (kWh and kvarh)
	without digital inputs;
	- Total and partial energy
	meters (kWh and kvarh)
	managed by time periods
	(t1-t2-t3-t4-t5-t6), W
	dmd synchronisation
	(the synchronisation is
	made every time the tariff
	changes) and GAS (m^{3})
	or WATER (hot/cold $/ \mathrm{m}^{3}$)
	or remote heating (kWh)
	meters;
	- Total and partial
	energy meters (kWh
	and kvarh) managed by
	time periods ($\mathrm{t} 1-\mathrm{t} 2$), W
	dmd synchronisation (the
	synchronisation is made
	independently of the tariff
	selection) and GAS (m^{3})
	or WATER ($\mathrm{hot} / \mathrm{cold} / \mathrm{m}^{3}$)
	or remote heating (kWh)
	meters;
	kvarh) and GAS, WATER
	(hot-cold m^{3}) and remote
	heating meters (3 choices
	only).
	- Remote alarm reset.
	- Remote input channel
	status.
	- Trip counter of installation

Output specifications (cont.)

Temperature input characteristics

Probe	Range	Accuracy	Min Indication	Max Indication
Pt100	$-60.0^{\circ} \mathrm{C}$ to $+300.0^{\circ} \mathrm{C}$	$\pm(0.5 \%$ RDG $+5 \mathrm{DGT})$	-60.0	+300.0
Pt100	$-76^{\circ} \mathrm{F}$ to $+572^{\circ} \mathrm{F}$	$\pm(0.5 \%$ RDG $+5 \mathrm{DGT})$	-76.0	+572.0
Pt1000	$-6.0^{\circ} \mathrm{C}$ to $+300.0^{\circ} \mathrm{C}$	$\pm(0.5 \% R D G+5 \mathrm{DGT})$	-60.0	+300.0
Pt1000	$-76^{\circ} \mathrm{F}$ to $+572^{\circ} \mathrm{F}$	$\pm(0.5 \% \mathrm{RDG}+5 \mathrm{DGT})$	-76.0	+572.0

Tariff energy meters and time period management

NOTE: only in case of M F I6 R4 and M F I6 O6 modules.

Meters	
Total	4 (up to 10 digit)
Partial	72 (up to 10 digit)
Tariffs	Up to 6
Time periods	Up to 3 year
Pulse output	Connectable to total and/or partial meters
Storage	Consumption history by storing the monthly energy meters (12 previous months) into the EEPROM. Storage of total and partial energy meters. Energy meter storage format (EEPROM) Min. -9,999,999,999 kWh/kvarh Max. 9,999,999,999 kWh/ kvarh
Energy Meters	Base on digital inputs and clock management
"Total" energy meters	+kWh, +kvarh, -kWh, -kvarh.
"Standard Period" energy meters	Up to 2 ("P1" and "P2") which can be set by month and year each.

$\left.\begin{array}{ll}\text { "Holiday Period" energy meters } & \begin{array}{l}\text { Up to } 10 \text { ("H1 ... H10"). } \\ \text { As per standard period } \\ \text { management every single }\end{array} \\ \text { one can be set by day/ }\end{array}\right\}$

Tariff energy meters overall working scheme

NOTE: only in case of M F I6 R4 and M F I6 O6 modules.

Where t1 to t6 are the "Tariffs".

Where P1 and P2 are the "Standard Periods" and H1 ... H10 Holiday periods which are identified by a defined day (non working day), by a vacation period or by a season period.

Note: the displaying of every single energy tariff is relevant only to the period being used. Other periods are available through the communication port.

Energy meters

Meters	
Total	4 (8+2, 9+1, 10 digit)
Partial	4 ($8+2,9+1,10$ digit)
Pulse output	Connectable to total and/or partial meters
Energy meter recording	Storage of total and partial energy meters. Energy meter storage format (EEPROM) Min. -9,999,999,999 kWh/ kvarh Max. 9,999,999,999 kWh/ kvarh.

Energy Meters

Total energy meters
Partial energy meters
$+k W h,+k v a r h,-k W h$, -kvarh
+kWh, +kvarh, -kWh, -kvarh

Management of the digital inputs

NOTE: only in case of M F 16 R4 and M F 16 O6 modules.

Function	Note	Digital inputs					
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Synch (dmd)	(1)	YES					
Tariff change	(2)	YES	YES	YES			
Hot Water	(3)				YES	YES	YES
Cold Water	(3)				YES	YES	YES
Gas	(3)				YES	YES	YES
Remote heating	(3)				YES	YES	YES
Remote alarm reset	(4)				YES		
Trip counter of protection	(5)				YES		
Remote input channel status	(6)	YES	YES	YES	YES	YES	YES
kWh counting (-)	(7)			YES			
kWh counting (+)	(7)				YES		
kvarh counting (+)	(7)					YES	

Note: every single digital input can be configured according to the table above.
(1) At each status change of digital signal (from OFF to ON) the instrument synchronises the DMD calculation. It also synchronises the clock to the multiple of the integration time nearest to the current time.
(2) It is used to select by means of the logic of three inputs up to 6 different tariffs: $\mathrm{t} 1-\mathrm{t} 2-\mathrm{t} 3-\mathrm{t} 4-\mathrm{t} 5-\mathrm{t} 6$. Every time the tariff changes, it starts also the synchronisation of the "dmd" calculation.
(3) It is used to count the pulses coming from different Utility meters like: cold water, hot water, gas and remote heating.
(4) It is used to remotely reset the alarms (In case of latch alarm).
(5) It is used to count how many times an external protection device trips.
(6) This function is available only in case of serial communication. It allows to detect the status of the digital input. The status is displayed on the display as well.
(7) The energy is metered by means of pulses coming from a external energy meter. This meter can be provided with up to 3 outputs (for imported active and reactive energy and for exported active energy). Note: the pulses counted from the watt-hour meter replaces the standard measurement of energy and the relevant displaying (total, partial and tariff), all other measurements (eg: V-A-W-VA-var, THD and so on) are still performed and displayed.

Harmonic distortion analysis

Analysis principle	FFT
Harmonic measurement Current	Up to the 32nd harmonic Voltage
Uppe of harmonics	THD (VL1 and VL1-N)
	THD odd (VL1 and VL1-N)
	THD even (VL1 and VL1-
	N)
	TDD
	The same for the other phases: L2, L3.
	THD (AL1)
	THD odd (AL1)
	THD even (AL1)
	The same for the other
	phases:
	L2, L3.

Harmonic phase angle	The instrument measures the angle between the single harmonic of " V " and the single harmonic of " l " of the same order. According to the value of the electrical angle, it is possible to know if the distortion is absorbed or generated. Note: if the system has 3 wires without neutral the angle cannot be measured.
Harmonic details	The harmonic spectrum so to built-up a graph is available only by means of the serial communication.

Event logging, data logging and load profiling

NOTE: only in case of M C 485232 M, M C ETH M, M C BAC IP M, M C BAC MS M, M C PB M and M C El M modules

Event logging	Only with communication module provided with data memory.	Storage duration	Before overwriting, see "Historical data storing time table.
Data displaying	The data are available on the display limited to the last 99 events. All events can be both checked and downloaded using any available communication port in combination with UCS software.	Number of variables Data format Storage method FIFO Memory type Memory size Memory retention time	See "Historical data storing time table". Variable, date (dd:mm:yy) and time (hh:mm:ss) Flash 4 Mb 10 years
Function enabling Stored data type Number of events	Activation: NO/YES Alarms, max./min. Max. 10,000	Load profiling	Only with communication module provided with data memory.
Data reset Data format	All events can be reset manually Event, date (dd:mm:yy) and time (hh:mm:ss)	Data displaying	The data are not available on the display but they can be both checked and downloaded using any
Storage methodFIFO Memory type Memory retention time	Flash 10 years		available communication port in combination with UCS software.
Data logging	Only with communication module provided with data memory.	Function enabling Storage interval	Activation: NO/YES Selectable: 5-10-15-20-30- 60 minutes of Wdmd and
Data displaying	The data are not available on the display but they can be both checked and downloaded using any available communication port in combination with UCS software.	Storage duration Data format	VAdmd. Before overwriting, 100 weeks: with recording interval of $5 \mathrm{~min} ; 300$ weeks: with storing interval of 15 min . Wdmd variable value,
Function enabling	Activation: NO/YES		minutes, day, month.
Stored data type	All variables.	Data synchronisation	Based on internal clock
Storage interval	Programmable from 1 min . to 60 min .; all instantaneous variables can be selected (max 19 variables)	Other characteristics	As per Event and Data logging.
Sampling management	The sample stored within the selected time interval results from the continuous average of the measured values. The average is calculated (min. sample) with an interval within two following measurements of approx. 100 ms .		

Display, LED's and commands

Display refresh time	$\leq 250 \mathrm{~ms}$	Virtual alarms	tim
Display	$\begin{aligned} & 4 \text { lines, 4-DGT, } 1 \text { lines, } \\ & 10-D G T \end{aligned}$		4 red LED available in case of virtual alarm (ALG1-AL
Type	LCD, dual colour backlight (selectable)		G2-AL G3-AL G4), every LED groups 4 alarms.
Digit dimensions	4-DGT: h 11 mm ; 10-DGT: h 7 mm		Note: the real alarm is just the activation of the proper
Instantaneous variables read-out	4-DGT		static or relay output if the
Energies variables read-out	Imported Total/Partial/ Tariff: 8+2DGT, 9+1DGT or 10DGT; Exported Total/ Partial/ Tariff: 8+2DGT, 9+1DGT or 10DGT (with "-" sign).	Energy consumption kWh pulsating	proper module is available. Red LED (only kWh) $0.001 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is ≤ 7 $0.01 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is
Gas-water-remote heating read-out	8+2DGT, 9+1DGT or 10DGT		$\geq 7.1 \leq 70.0$ $0.1 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is
Run Hours counter	8+2 DGT (99.999.999 hours and 59 minutes max)		$\geq 70.1 \leq 700.0$ $1 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if
Overload status	EEEE indication when the value being measured is exceeding the "Continuous inputs overload" (maximum measurement capacity)		the Ct ratio by VT ratio is $\geq 700.1 \leq 7000$ $10 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is $\geq 7001 \leq 70.00 \mathrm{k}$
Max. and Min. indication	Max. instantaneous variables: 9999; energies: 9999999 999. Min. instantaneous variables: 0.000 ; energies 0.00		$100 \mathrm{kWh} /$ kvarh by pulse if the Ct ratio by VT ratio is $>70.01 \mathrm{k}$ Max frequency: 16 Hz , according to EN 62052-11
Front position LEDs Bar-graph	Three groups of 3-LED (green-red) split by phase L1-L2-L3 and level of measurement. The full scale (100%) is referred to a programmable value which is corresponding to the variable being measured and displayed by the instrument at the	Back position LEDs On the base On the communication modules	Green as power-on Two LEDs: one for TX (green) and one for RX (amber).
		Key-pad	For variable selection, programming of the instrument working parameters reset, "dmd", "max", total energy and partial energy and event.

Main functions

Password
1st level
2nd level
System selection System 3-Ph.n unbalanced load System 3-Ph. unbalanced load

Numeric code of max. 4 digits; 2 protection levels of the programming data:
Password "0", no protection;
Password from 1 to 9999, all data are protected

3 -phase (4-wire)
3 -phase (3-wire), three
currents and 3-phase
to phase voltage measurements, or in case of Aaron connection two currents (with special wiring on screw terminals)

System 3-Ph. 1 balanced load

System 3-Ph. 2 balanced load

System 2-Ph
System 1-Ph

[^0]Main functions (cont.)

Transformer ratio	
VT (PT)	1.0 to 999.9 / 1000 to 9999.
CT	1.0 to 999.9 / 1000 to 9999 (up to 10kA in case of CT with 1 A secondary current and up to 50 kA in case of CT with 5A secondary current).
Maximum CT ratio x VT ratio	9999×9999
Filter	
Operating range	Selectable from 0 to 100% of the input display scale
Filtering coefficient	Selectable from 1 to 32
Filter action	Measurements, analogue signal retransmission, serial communication (fundamental variables: $\mathrm{V}, \mathrm{A}, \mathrm{W}$ and their derived ones).
Displaying	
Number of variables	Up to 5 variables per page. See "Front view".
	Many different set of variables available (see
	"Display pages") according to the application being
	selected. One page is freely programmable as combination of variables.
Backlight	The backlight time is programmable from 0 (always on) to 255 minutes
Virtual alarms	
Working condition	In case of basic unit or with the addition of M O R2, M O O2, M F I6 R4 or MF 1606.
No. of alarms	Up to 16
Working mode	Up alarm and down alarm and windows alarm (IN/ OUT).
Controlled variables	The alarms can be connected to any instantaneous variable available in the table "List of the variables that can be connected to".
Set-point adjustment	From 0 to 100% of the display scale
Hysteresis	From 0 to 100\%
On-time delay	0 to 255s
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: " 0 s".
Alarm highlight	In case of alarm and if the relevant function is enabled, the display changes the colour from white backlight

	to blue backlight or to another available colour combination (fore more details see "Working mode of the display in a normal/
abnormal condition")	
Reset	By means of the front key-
pad or the configuration	
software. It is possible to	
reset the following data:	
	- all the min, max, dmd,
and dmd-max values.	
	- total energies: kWh,
	kvarh;
	- partial energies and
tariffs: kWh, kvarh;	
	- gas, water and remote
heating;	
	- latch alarms;
	- all the events;
	- all the load profiling;
- all data logging	

CARLO GAVAZZI

General specifications

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to 131° F) (R.H. from 0 to 90% non-condensing @ $40^{\circ} \mathrm{C}$) according to EN62053-21, EN62053-23	Standard compliance Safety Metrology	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11. EN62053-22, EN62053-23.
Storage temperature	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right. \\ & \text { to } \left.158^{\circ} \mathrm{F}\right)(\mathrm{R} . \mathrm{H} .<90 \% \\ & \text { non-condensing @ } \left.40^{\circ} \mathrm{C}\right) \\ & \text { according to EN62053-21, } \\ & \text { EN62053-23 } \end{aligned}$	Pulse output	IEC62053-31
		Approvals	CE, cULus "Listed" (cULus: max. $40^{\circ} \mathrm{C}$, all modules in all combinations)
		Connections Cable cross-section area	Screw-type max. $2.5 \mathrm{~mm}^{2}$. min./max. screws tightening torque: $0.4 \mathrm{Nm} / 0.8 \mathrm{Nm}$. Suggested screws tightening torque: 0.5 Nm
Installation category	Cat. III (IEC60664, EN60664)		
Insulation (for 1 minute)	See "Insulation between inputs and outputs" table		
Dielectric strength	4 kVAC RMS for 1 minute		
Noise rejection CMRR	$100 \mathrm{~dB}, 48$ to 62 Hz	Housing Dimensions (WxHxD)	
EMC Immunity and emissions	According to EN62052-11		Module holder: $96 \times 96 \times 50 \mathrm{~mm}$. "A" and "B" type modules: $89.5 \times 63 \times 16 \mathrm{~mm}$. "C" type module: $89.5 \times 63 \times 20 \mathrm{~mm}$.
		Max. depth behind the panel	With 3 modules $(A+B+C)$: 81.7 mm
		Material	Polycarbonate/ABS/Nylon PA66, self-extinguishing: UL 94 V-0
		Mounting	
		Protection degree Front Screw terminals	IP65, NEMA4x, NEM12 IP20
		Weight	Approx. 420 g (packing included)

Power supply specifications

Auxiliary power supply

H:100-240 +/-10\% (90 to 255) VDC/AC ($50 / 60 \mathrm{~Hz}$) L: 24-48 +/-15\% (20 to 55) VDC/AC (50/60 Hz)

AC: 20 VA ;
 DC: 10 W

Insulation between inputs and outputs

	Power Supply	Measuring Input	Relay outputs (MOR2)	Relay outputs (MFR4I6)	Static outputs (MOO2)	Static outputs (MFO616)	Serial communication	Ethernet port	Analogue output	Digital inputs	Neutral current input	20 mA input	Temperature input
Power Supply	-	4kV	4kV	4kV	4 kV	4 kV	4 kV	4kV	4kV	4 kV	4kV	4kV	4kV
Measuring Input	4kV	-	4 kV	4 kV	4kV	4kV	4 kV	4 kV	4 kV	4 kV	4kV	4kV	4kV
Relay outputs (MOR2)	4kV	4kV	2kV	4kV	-	4kV							
Relay outputs (MFR416)	4kV	4kV	4kV	2kV	4kV	-	4kV						
Static outputs (MOO2)	4kV	4kV	-	4kV	2kV	4kV							
Static outputs (MFO6I6)	4kV	4kV	4kV	-	4kV	OkV	4kV						
Serial communication	4kV	4kV	4kV	4kV	4kV	4kV	-	-	4kV	4kV	4kV	4kV	4kV
Ethernet port	4kV	4 kV	4kV	4kV	4kV	4kV	-	-	4kV	4kV	4kV	4 kV	4 kV
Analogue output	4kV	4 kV *	4kV	4kV	4kV	4kV							
Digital inputs	4kV	4 kV	4kV	OkV	4kV	4kV	4kV						
Neutral current input	4kV	-	OkV	OkV									
20 mA input	4kV	OkV	-	OkV									
Temperature input	4kV	4kV	4 kV	4 kV	4kV	4kV	4kV	4 kV	4kV	4kV	OkV	OkV	-

*: $\quad 4 \mathrm{kV}$ respect another module 4 kV , in the same module 0 kV .
OkV: not isolated.
-: combination not allowed.
NOTE: all the models have, mandatory, to be connected to external current transformers because the isolation among the current inputs is just functional (100VAC).

List of the variables that can be connected to:

- Communication port (all listed variables)
- Analogue outputs (all variables with the only exclusion of "totalizers" and "run hour counter"
- Pulse outputs (only "energies")
- Alarm outputs ("totalizers", "hour counter" and "max" excluded)

No.	Variable	1-ph. sys (1P)	$\begin{gathered} \text { 2-ph. } \\ \text { sys } \\ \text { (2P) } \end{gathered}$	3-ph. 3-wire balanced sys (3P.1)	3-ph. 2-wire balanced sys (3P.2)	3-ph. 3-wire unbal. sys (3P)	3-ph. 4-wire unbal. sys (3P.n)	Notes
1	VL-N sys	0	X	X	X	\#	X	sys= system= $\sum(1)(2)(3)$
2	VL1	X	X	X	X	\#	X	(1)(2)(3)
3	VL2	0	X	H	H	\#	X	(1)(2)(3), (H)=VL1
4	VL3	0	0	H	H	\#	X	(1)(2)(3), (H)=VL1
5	VL-L sys	\#	\#	X	X	X	X	sys= system $=\sum(1)$
6	VL1-2	\#	X	X	P	X	X	(1)(2)(3), (P)=VL1*1.73
7	VL2-3	\#	0	X	P	X	X	(1)(2)(3), (P)=VL1*1.73
8	VL3-1	\#	0	X	P	X	X	(1)(2)(3), (P)=VL1*1.73
9	Asys	0	X	0	0	X	X	
10	An	\#	X	0	0	0	X	
11	AL1	X	X	X	X	X	X	(1)(2)(3)
12	AL2	0	X	R	R	X	X	(1)(2)(3), (R)=AL1
13	AL3	0	0	R	R	X	X	(1)(2)(3), (R)=AL1
14	VA sys	0	X	X	X	X	X	sys= system $=\sum(1)(2)(3)$
15	VA L1	X	X	X	X	0	X	(1)(2)(3)
16	VA L2	0	X	U	U	0	X	(1)(2)(3) U=VAL1
17	VA L3	0	0	U	U	0	X	(1)(2)(3) U=VAL1
18	var sys	X	X	X	X	X	X	sys= system $=\sum(1)(2)(3)$
19	var L1	X	X	X	X	0	X	(1)(2)(3)
20	var L2	0	X	V	V	0	X	(1)(2)(3) V=VARL1
21	var L3	0	0	V	V	0	X	(1)(2)(3) V=VARL1
22	W sys	0	X	X	X	X	X	sys= system $=\sum(1)(2)(3)$
23	WL1	X	X	X	X	0	X	(1)(2)(3)
24	WL2	0	X	S	S	0	X	(1)(2)(3), (S) = WL1
25	WL3	0	0	S	S	0	X	(1)(2)(3), (S) = WL1
26	PF sys	0	X	X	X	X	X	sys= system $=\sum(1)$
27	PF L1	X	X	X	X	0	X	(1)(2)(3)
28	PF L2	0	X	T	T	0	X	(1)(2)(3), (T)=PFL1
29	PF L3	0	0	T	T	0	X	(1)(2)(3), (T)=PFL1
30	Hz	X	X	X	X	X	X	(1)(2)(3)
31	Phase seq.	0	0	X	0	X	X	

$(\mathrm{X})=$ available; $(\mathrm{O})=$ not available; (\#) Not available (the relevant page is not displayed)
(1) Min. and Max. value with data storage; (2) "dmd" calculation and data storage; (3) "dmd-max" calculation and data storage; (5) On 4 quadrants (ind/cap); (6) C1, C2 and C3 may be set as either cold water, hot water, remote heating or gas depending on the input configuration.

List of the variables that can be connected to (cont.):

- Communication port (all listed variables)
- Analogue outputs (all variables with the only exclusion of "energies" and "run hour counter"
- Pulse outputs (only "energies")
- Alarm outputs ("energies", "hour counter" and "max" excluded)

No.	Variable	$\begin{gathered} \text { 1-ph. } \\ \text { sys } \\ \text { (1P) } \end{gathered}$	$\begin{gathered} \text { 2-ph. } \\ \text { sys } \\ \text { (2P) } \\ \hline \end{gathered}$	3-ph. 3-wire balanced sys (3P.1)	3-ph. 2-wire balanced sys (3P.2)	3-ph. 3-wire unbal. sys (3P)	3-ph. 4-wire unbal. sys (3P.n)	Notes
32	Asy VLL	0	0	X	0	X	X	Asymmetry
33	Asy VLN	0	X	0	0	0	X	Asymmetry
34	Run Hours	X	X	X	X	X	X	
35	kWh (+)	X	X	X	X	X	X	Total
36	kvarh (+)	X	X	X	X	X	X	Total (5)
37	kWh (+)	X	X	X	X	X	X	Partial or by tariff
38	kvarh (+)	X	X	X	X	X	X	Partial or by tariff (5)
39	kWh (-)	X	X	X	X	X	X	Total
40	kvarh (-)	X	X	X	X	X	X	Total (5)
41	kWh (-)	X	X	X	X	X	X	Partial
42	kvarh (-)	X	X	X	X	X	X	Partial (5)
43	C1 (input 4)	X	X	X	X	X	X	Total (6)
44	C2 (input 5)	X	X	X	X	X	X	Total (6)
45	C3 (input 6)	X	X	X	X	X	X	Total (6)
46	Trip counter	X	X	X	X	X	X	Total
47	kWh Water	X	X	X	X	X	X	Total
48	A L1 THD	X	X	X	X	X	X	(2) (3) (4)
49	A L2 THD	0	X	F	F	X	X	(2)(3)(4), (F)=AL1THD
50	A L3 THD	0	0	F	F	X	X	(2)(3)(4), (F)=AL1THD
51	V L1 THD	X	X	X	X	0	X	(2)(3)(4)
52	V L2 THD	0	X	X	G	0	X	(2)(3)(4), (G) =VL1THD
53	V L3 THD	0	0	X	G	0	X	(2)(3)(4), (G)=VL1THD
54	V L1-2 THD	\#	X	X	\#	X	X	(2) (3) (4)
55	V L2-3 THD	\#	0	X	\#	X	X	(2) (3) (4)
56	V L3-1 THD	\#	0	X	\#	X	X	(2) (3) (4)
57	A L1 TDD	X	X	X	X	X	X	(2) (3) (4)
58	A L2 TDD	0	X	X	X	X	X	(2) (3) (4)
59	A L3 TDD	X	X	X	X	X	X	(2) (3) (4)
60	K-Factor	0	0	X	X	X	X	(2) (3) (4)

$(X)=$ available; $(O)=$ not available; (\#) Not available (the relevant page is not displayed); (2) "dmd" calculation and data storage; (3) "dmd-max"calculation and data storage; (4) Odd and Even THD's;

List of selectable applications

	Description	Notes
A	Cost allocation	Imported energy metering (Easy connection)
B	Cost control	Imported and partial energy metering and utilities (Easy connection)
C	Complex cost allocation	Imported/exported energy (total, partial and tariff) and utilities
D	Solar	Imported and exported energy metering with some basic power analyzer function
E	Complex cost and power analysis	Imported/exported energy (total and partial) and power analysis (Easy connection)
F	Cost and power quality analysis	Imported energy and power quality analysis
G	Advanced energy and power analysis for power generation	Complete energy metering and power quality analysis

Display pages

	Line 1 Variable Type		Line 3Variable Type	Line 4 Variable Type	Line 5 Variable Type	Note	Applications				
		Variable Type					A	C	D	E F	F
0	Total kWh (+)						x	\times	$\mathrm{x} \times$	$\times \mathrm{x}$	\times
1	Total kvarh (+)						x	-			$\times \mathrm{x}$
2	Total kWh (-)							x	x x	x	x
3	Total kvarh (-)							x		x	x
4	kWh (+) partial							$\times \mathrm{x}$		x \times	$\times \mathrm{x}$
5	kvarh (+) part.							$\times \mathrm{x}$		$\times \mathrm{x}$	$\times \mathrm{x}$
6	kWh (-) partial							x		x	x
7	kvarh (-) part.							x		x	x
8	Run Hours (99999999.99)							\times	$\mathrm{x} \times$	x	$\times \mathrm{x}$
9	kWh (+) t1							x		\times	x
10	kvarh (+) t1							x		x	x
11	kWh (-) t1							x		x	x
12	kvarh (-) t1							x		x	x
13	kWh (+) t2							-		x	x
14	kvarh (+) t2							x		-	x
15	kWh (-) t2							\times		x	x
16	kvarh (-) t2							x		x	x
17	kWh (+) t3							\times		x	x
18	kvarh (+) t3							x		x	x
19	kWh (-) t3							x		x	x
20	kvarh (-) t3							x		\times	x
21	kWh (+) t4							x		x	x
22	kvarh (+) t4							x		x	x
23	kWh (-) t4							x		x	x
24	kvarh (-) t4							x		x	x
25	kWh (+) t5							x		-	x
26	kvarh (+) t5							x		x	x
27	kWh (-) t5							x		x	x
28	kvarh (-) t5							x		x	x
29	kWh (+) t6							x		-	x
30	kvarh (+) t6							x		x	x
31	kWh (-) t6							x		x	x
32	kvarh (-) t6							\times		x	x
33	C1					(5)		$\times \mathrm{x}$		x	x
34	C2					(5)		\times		x	x
35	C3					(5)		$\times \mathrm{x}$		x	x
36		VLN Σ	VL1	VL2	VL3	(1) (2) (3)			$\times \times$	x x	$\times \mathrm{x}$
37		VLL Σ	VL1-2	VL2-3	VL3-1	(1) (2) (3)			$\times \times$	x \times	+ \times
38		An	AL1	AL2	AL3	(1) (2) (3)			x	\times	x x
39		Hz	"ASY"	VLL sys (\% asy)	VLN sys (\% asy)	(1) (2) (3)			$\times \times$	x \times	x \times
40		A Σ	AL1	AL2	AL3	(1) (2) (3)			$\times \times$	x x	x x
41		W Σ	WL1	WL2	WL3	(1) (2) (3)			$\times \times$	x \times	x \times
42		var \sum	var L1	var L2	var L3	(1) (2) (3)				\times	x \times
43		PF Σ	PF L1	PF L2	PF L3	(1) (2) (3)					x \times ¢
44		VA Σ	VAL1	VAL2	VAL3	(1) (2) (3)				$\mathrm{x} \times$	x x
45				Process sig.	Temperature	(1) (2) (3)					x x
46			THD V1	THD V2	THD V3	(1) (2) (3)					¢ \times
47			THD V12	THD V23	THD V31	(1) (2) (3)					+ \times
48			THD A1	THD A2	THD A3	(1) (2) (3)					- \times
49			THD V1 odd	THD V2 odd	THD V3 odd	(1) (2) (3)				${ }^{x}$	+ \times
50			THD V12 odd	THD V23 odd	THD V31 odd	(1) (2) (3)				\times	- \times
51			THD A1 odd	THD A2 odd	THD A3 odd	(1) (2) (3)					$\times \mathrm{x}$
52			THD V1 even	THD V2 even	THD V3 even	(1) (2) (3)					- \times
53			THD V12 even	THD V23 even	THD V31 even	(1) (2) (3)				x ${ }^{\text {x }}$	x
54			THD A1 even	THD A2 even	THD A3 even	(1) (2) (3)				\times	x ${ }^{\text {x }}$
55			TDD A1	TDD A2	TDD A3	(1) (2) (3)				x	\times
56			k-FACT L1	k-FACT L2	k-FACT L3	(1) (2) (3)					

Note: the table refers to system 3P.n.
(1) Also Minimum value (no EEPROM storage). (2) Also Maximum value (no EEPROM storage). (3) Also Average (dmd) value (no EEPROM storage). (5) C1, C2 and C3 may be set as either cold water, hot water, remote heating or gas depending on the
digital inputs configuration.

Additional available information on the display

No.	8 Line 1	Line 2	Line 3	Line 4	Line 5	Applications						
						A	B	C	D	E	F	G
1	Lot $n .($ text) xxxx	Yr. (text) xx	rEL	X.xx	1... 60 (min) "dmd"	X	X	X	X	X	X	x
2	Conn. xxx.x (3ph.n/3ph/3ph.1/ $3 p h .2 / 1 \mathrm{ph} / 2 \mathrm{ph}$)	CT.rA (text)	1.0 ... 99.99k	PT.rA (text)	1.0... 9999	x	x	X	X	X	x	x
3	LED PULSE (text) kWh	xxxx kWh per pulse				X	X	X	X	X	X	x
4	PULSE out1 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & +/- \text { tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			x	x	X	X	X	X	x
5	PULSE out2 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr/ tAr 1-2-3-4			X	x	X	x	X	X	x
6	PULSE out3 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr/ tAr 1-2-3-4			X	x	X	X	X	X	x
7	PULSE out4 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & \text { +/- tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			X	x	X	x	X	x	x
8	PULSE out5 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr/ tAr 1-2-3-4			X	x	X	X	x	x	x
9	PULSE out6 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr/ tAr 1-2-3-4			X	x	X	x	X	x	x
10	PULSE out7 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr/ tAr 1-2-3-4			x	x	x	X	X	X	x
11	PULSE out8 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	$\begin{aligned} & \text { +/- tot/PAr/ } \\ & \text { tAr 1-2-3-4 } \end{aligned}$			X	x	x	x	X	X	x
12	Remote out.	Out 1 (text)	on/oFF	Out 2 (text)	on/oFF	X	x	x	x	X	x	x
13	Remote out.	Out 3 (text)	on/oFF	Out 4 (text)	on/oFF	x	x	x	x	x	x	x
14	Remote out.	Out 5 (text)	on/oFF	Out 6 (text)	on/oFF	x	x	x	x	x	x	x
15	Remote out.	Out 7 (text)	on/oFF	Out 8 (text)	on/oFF	x	x	x	x	x	x	x
16	AL1 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
17	AL2 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				x	X	X	x
18	AL3 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	x	x
19	AL4 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
20	AL5 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
21	AL6 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
22	AL7 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
23	AL8 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
24	AL9 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
25	AL10 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
26	AL11 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
27	AL12 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
28	AL13 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
29	AL14 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
30	AL15 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	x
31	AL16 OUTx NE/ND	Variable link L 1/2/3	Set1	Set2	(Measurement)				X	X	X	X
32	Analogue 1	$\mathrm{Hi}: \mathrm{E}$	0.0 ... 9999	Hi.A	0.0 ... 100.0\%				X	X	X	X
33	Analogue 2	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%				X	X	X	x
34	Analogue 3	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%				X	X	X	x
35	Analogue 4	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%				X	X	X	X
36	Optical	bdr (text)	$\begin{gathered} \hline 9.6 / 19.2 / \\ 38.4 / 115.2 \\ \hline \end{gathered}$			X	x	X	X	X	X	x
37	COM port	Add (text)	xxx (address)	bdr (text)	$\begin{gathered} \hline 9.6 / 19.2 / \\ 38.4 / 115.2 \end{gathered}$	X	x	X	X	X	X	x
38	IP address	XXX	XXX	XXX	XXX	X	x	X	X	X	X	x
39	xx.xx.xx xx:xx	Date	Time			X	x	X	X	X	X	X
40	Event page Date Time								X	X	X	X

CARLO GAVAZZI

Back protection rotary switch

	Function	Rotary switch position	Description
	Unlock	1	All programming parameters are freely modifiable by means of the front key-pad and by means of the communication port.
$\left\|\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right\|$	Lock	7	The key-pad, as far as programming is concerned and the data through the serial communication cannot be changed (no writing into meter allowed). Data reading is allowed.

Accuracy (According to EN62053-22 and EN62053-23)

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

—Class 2 accuracy limits (Reactive energy) Start-up current: 5mA (AV5-AV6), 1mA (AV4-AV7)

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{i}$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$
Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent three-phase voltage

$$
V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}
$$

Voltage asymmetry
$A S Y_{L L}=\frac{\left(V_{L L \text { max }}-V_{L L \text { min }}\right)}{V_{L L} \Sigma}$
$A S Y_{L N}=\frac{\left(V_{L N \text { max }}-V_{L N \text { min }}\right)}{V_{L N} \Sigma}$
Three-phase reactive power
$\operatorname{var}_{\Sigma}=\left(\right.$ var $\left._{1}+\operatorname{var}_{2}+\operatorname{var}_{3}\right)$
Three-phase active power

$$
W_{\Sigma}=W_{1}+W_{2}+W_{3}
$$

Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}$
Total harmonic distortion
$T H D_{N}=100 \frac{\sqrt{\sum_{n=2}^{N}\left|X_{n}\right|^{2}}}{\left|X_{1}\right|}$

Three-phase power factor
$\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Energy metering

$k \operatorname{var} h i=\int_{t 1}^{t 2} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$k W h i=\int_{t 1}^{12} P i(t) d t \cong \Delta t \sum_{n 1}^{n 2} P n j$
Where:
$\mathrm{i}=$ considered phase (L1, L2 or L3)
$\mathbf{P}=$ active power; $\mathbf{Q}=$ reactive power; $\mathbf{t}_{1}, \mathbf{t}_{2}=$ starting and ending time points of consumption recording; $\mathbf{n =}$ time unit; $\Delta t=$ time interval between two successive power consumption;
$\mathbf{n}_{1}, \mathbf{n}_{2}=$ starting and ending discrete time points of consumption recording

UCS parameter progr. and var. reading software

UCS software

Working mode

Multi-language software (Italian, English, French, German, Spanish, Danish, Czech, Chinese) for variable reading and parameters programming (both online and offline). The program runs under Windows 7 and following versions. Four different working modes can be selected:

	- management of local
RS232 (MODBUS);	
- management of local opti-	
cal port (MODBUS);	
- management of a local	
	RS485 network (MODBUS); - managed via TCP port. In pre-formatted CSV or Excel files). Data Storing Danual.

- management of local optical port (MODBUS);
- management of a local RS485 network (MODBUS); - managed via TCP port. In pre-formatted CSV or Excel files).
Manual.

Alarm parameters and logic

00	Each symbol includes all the settings described in the "alarm" paragraph and listed on the right:	- Enable. - Variable - Type - Latch - Disable - Set 1	- Set 2 - OUT - Delay on. Delay off. - Function (and/or)

A, B, C... up to 16 locks to control parameters.

UP alarm
SET1 > SET2

DOWN alarm
SET2 > SET1

In-window alarm
Alarm is on when the value is between SET 1 and SET 2

Ext. window alarm with disa-
bling at power on
Alarm is on when value exceeds SET 1 or goes below SET 2

Example of AND/OR logic alarm:

Historical data storing time table

$\begin{array}{\|c\|} \text { Time } \\ \text { interval } \\ \text { (minutes) } \end{array}$	4 selected variables			8 selected variables			12 selected variables			19 selected variables		
	Data storing time			Data storing time			Data storing time			Data storing time		
	Days	Week	Year									
1	32	5	-	19	3	-	15	2	-	8	1	-
5	161	23	-	97	14	-	73	10	-	40	6	-
10	323	46	-	194	28	-	145	21	-	81	12	-
15	484	69	1.3	291	42	-	218	31	-	121	17	-
20	646	92	1.8	388	55	1.1	291	42	-	161	23	-
30	969	138	2.7	581	83	1.6	436	62	1.2	242	35	-
45	1453	208	4	872	125	2.4	654	93	1.8	363	52	1
60	1938	277	5.3	1163	166	3.2	872	125	2.4	484	69	1.3

The working of data logging

Wiring diagrams

System type selection: 3-Ph.n

System type selection: 3-Ph. 2

3-ph, 2-wire, balanced load Fig. 2

1-CT and 1-VT/PT connections

System type selection: 3-Ph

System type selection: 3-Ph (cont.)

3-ph, 3-wire, unbalanced load Fig. 8

Wiring diagrams

System type selection: 3-Ph. 1
3-ph, 3-wire, balanced load Fig. 9

System type selection: 2-Ph (cont.)

System type selection: 2-Ph

System type selection: 1-Ph

Power Supply
90 to 260VAC/DC (H option) Fig. 15 Fig. 16 to 60VAC/DC (L option) \quad F

Static, relay, analogue out. and digital in. wiring diagrams

Temperature, process signal and true In wiring diagrams

RS485 and RS232 wiring diagrams

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($B+$) and (T). The A communication RS232 and RS485 ports can't be connected and used simultaneously.

RS485 wiring diagram of Bacnet module

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between $(B+)$ and (T).

Ethernet and BACnet-IP connections

Connection to Ethernet or BACnet modules using the RJ45 connector.

Profibus module connections

Connection to the Profibus module using USB micro type B (Modbus RTU) and RS485 DB9 (Profibus DP-V0).

Front panel description

1. Key-pad

To program the configuration parameters and scroll the variables on the display.
2. Display

LCD-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

3. kWh LED

Red LED blinking proportional to the energy being measured.
4. Alarm LED's

Red LED's light-on when virtual alarms are activated.
5. Multiple bar-graph

To show at a glance the status of the single phases L1-L2-L3.
6. Main bar-graph

To display the power consumption versus the
installed power.
7. Optical communication port

To program the working parameters, to read the measurements and to download the stored data.

Dimensions and Panel cut-out

[^0]: and 3-phase to phase voltage measurements. 3 -phase (3-wire), one current and 3 -phase to phase voltage measurements 3 -phase (4-wire), one current and 3-phase to neutral voltage measurements. 3 -phase (2-wire), one current and 1-phase (L1) to neutral voltage measurement.
 2-phase (3-wire)
 1-phase (2-wire)

