

AC/DC- Converter / Battery charger

Series PSI

1200Watt

Type	Output adjustable			Boost charge	Alarm
	Spannung (VDC)	Strom (ADC)	OVP (VDC)	max. (VDC)	$\mathrm{U}_{\text {Out }}$ (SVDC)
PSI 1200/24	23-28	30-40	24-33	29	20
PSI 1200/36	34-42	20-25	36-50	43	30
PSI 1200/48	46-56	15-20	48-65	58	41
PSI 1200/60	58-70	12-16	60-80	72	51
PSI 1200/110	100-130	7-9	110-150	132	95
PSI 1200/220	200-260	3-4,5	220-300	264	190

Technical Data Series PSI

Input

Voltage	a) $185-264$ VAC $45-65 \mathrm{~Hz}$
	b) $260-370 \mathrm{VDC}$ no NTC
EMV HF-Spikes/Burst	EN60801-3/4/5-level III
Inrush current	NTC $7 \Omega, 10 \mathrm{~A}$
Switch on time	7 s typical
Power factor	0.75 cap. typical, Crest 2.5
No load current	typical 0,25A 1
Current nom. load 9 A at 185 V	
Hold up time	$20 \mathrm{~ms} / 230 \mathrm{~V}$
RFI	EN55022-"A"
Fuse	external Fuse
	10A slow blow or
	16 A Circuit Breaker "C" or "K"

Output

Voltage
Current
Output characteristic
OVoltage regulation
Sense lines
Current regulation
Ripple
Recovery time
OVP (Over voltage protec.)

OTP (Over temperature)
Redundant operation
Parallel operation
Operation in series

Boost charge

Option T
decoupling by diode, no load protected, OCP and OVP see table
see table
UI / Option W,Z,T
stat. +-2\% or +-1V which ever is greater dyn. +-4\% 10-100\% Load 10\% UOUT max. compensating
+-5\% / nominal load
<200mV P/P
<2mV psophometrie CISPR
1 ms typ.
see table
electronic turn -off <2ms reset through push-button turn off - Reset through push button
possible through built in diode
possible, unlimited
possible with option U
(cross diode)
Option W = manual switch
Option Z = manual switch with automatic, time delayed return see table
Temp. compensated charging

Controls/ Indicators

Control elements / Indicators

(on Front panel)	LED 1 green/Power On
	LED 2 red/over voltage
	LED 3 red/over temperature
	reset-push button for 2,3
	potentiometer U OUT
	potentiometer OVP
External Alarm	
(on Connector)	anode decoupling diode
	max. $0,1 \mathrm{~A}$
	output $<85 \%$ Unom by
	potentialfree contacts
	1 NCC $/ 1$ NOC
	$250 \mathrm{~V} / 1 \mathrm{~A} / 40 \mathrm{~W}$ max.
	Values see table

General

Operation temperature
Load derating
Storage temperature
Humidity
Cooling

Switching frequency
Construction

Isolation

Creepage distance

Air distance

Mechanical construction

Front plate
Connector
Weight

EMV
$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$2,5 \% /{ }^{\circ} \mathrm{C}$ from $+40^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
75% without condensation
regulated DC-fans
intake through front panel exhaust through rear panel app. 80 kHz
VDE 0804 / EN 60950
class 1
input/all/3500 VDC
output/all/1400 VDC
6 mm input / output
4 mm case / all
6 mm input / output
4 mm case/ all
designed for 19"-racks 3U,
335 mm deep
42TE / RAL 7032
$2 \times$ H15, DIN 41612
app. 5 kg

EN 61000-6-2 / EN 61000-6-4

General Description

Primary Circuit

The input is connected to the primary switching system via NTC, RFI filter 2 and bridge-connected rectifier 3. The filter reduces switching noise that is conduced into the primary supply system. NTC resistor 1 limits the inrush current. The rectified input voltage can be used for connection of additional storage capacitors or DC- supply voltage of 260-370VDC.

The switching system is a push-pull circuit in full-bridge connection. Switching transistors $6 a$ and $6 b$ are controlled by circuit 8 alternately conducting with variable pulse-width, connecting the rectified input voltage with alternating polarity to the primary winding of transformer 5. The signal across C.T. 7 is used for current limiting for the protection of the semiconductors against excessive current.

Block Diagram

General Information

Starting Behaviour

When the module is connected to the input power, the primary capacitors will be charged by a high current pulse. The magnitude of this pulse mainly depends on the supply system. With a internal thermistor in series with the input, this current pulse is reduced. This current limiting will not be effective if the power is interrupted for a short period of time only, not allowing the thermistor to cool down. The build-up of the output voltage is electronically delayed by a soft-start circuit on the control board and does hardly contribute to the current surge at the input during turn-on. The output voltage reaches he final value in approx. 2s after the application of input power.

No Load Operation

The primary and the secondary control circuits are powered from auxiliary windings on the main transformer, and in order to keep them in operation, the oscillation must be maintained, even with no output load. Since a certain amount of energy is transferred to the secondary side with every cycle, a small base load is built into the module in the order of $1 \ldots 2 \%$ of the rated load. No additional external load is required for stable operation.

Overvoltage Protection (OVP)

To protect the load and the internal circuits against excessive output voltage, an independent circuit switches off the primary control pulses if a certain adjustable output voltage is exceeded, so that no more energy is transmitted to the secondary side. Different from „crow-bar" circuits, which apply a short circuit across the output terminals by firing a thyristor, the system used here does not provide protection against overvoltage that comes from outside which, however, is quite unlikely to happen. After press the reset bottom the unit returns back to operation.

Overtemperature Protection (OTP)

To protect the unit against over temperature in case of fan failure, blocked filter pad or ext. over temperature an independent circuit switches off the output voltage within 2 ms . After cooling down press the reset bottom to get the converter back in function.

Output Ripple

The output voltage of switch mode converters/power supplies is generated by a filter circuit from PWM regulated AC voltage. According to the modes of filtering used, a ripple remains more or less. This ripple consists of periodic changes of the output voltage and also of the spikes generated by transistors and diodes turning on/off. It is defined and measured at the maximum input voltage / maximum output current up to 30 MHz bandwidth.

A test set-up must have the shortest possible connections to avoid or minimize pick-up and measuring faults. A small filter set-up will help (see drawing).

Even at short connections between the power supply and load, ripple and spikes may increase due to high switching currents combined with capacities / induct- ances of wiring / PCB's. Small capacitor blocks ($1 \mu \mathrm{~F}$ electrolytic / $0.1 \mu \mathrm{~F}$ MKT) connected as near as possible to the load will solve this problem in most cases.

Current Limiting

To protect the module and the load against excessive current, a circuitry is provided that senses the output current and takes over control when a certain level is exceeded. The current limit operates as a constant current source with approx. 5\% accuracy. This allows the charging of all kinds of batteries.

Normal-Operation

Serial Connection for Higher Voltage

This mode of operation can be used without any problems, but the following points should be considered:

1. The output ripple of the individual units may add up to a higher absolute value (relatively it remains the same).
2. The total output voltage should not exceed the safety / isolation limits of the individual units.
3. Should one unit fail, its output will then be loaded by the other units with wrong polarity. Therefore, all the outputs should be protected by a cross diode.

Parallel Connection for Higher Power

In order to increase the output power/current, as many identical units as possible can be parallel connected. However, the following should be taken into consideration:

1. The output voltages should be adjusted as close as possible to each other in order to minimize the volt- age tolerance. This adjustment should then be made when the outputs are loaded 10-20\% nomi- nal.
2. It is absolutely necessary to set the current limit to $\leq 100 \%$ nominal.
3. The output wires must be connected to one point.

Drawing 1

Dimensions / Adjustments

Front view

LED ON /Green LED
indicates presence of DC output

SET OUTPUT

The output voltage can be set by this multiturn potentiometer

SET OVER VOLT

The over-voltage setting can be altered by this multiturn potentiometer.

LED OVER VOLT

Red LED indicates that the output voltage was above the limit set by over-voltage potentiometer. The output voltage is reduced to zero in this condition.

LED OVER TEMP

Red LED indicates excessive temperature of heat sinks inside. The output is shut off in this condition. Cooling time is about 20 min .

RESET-Button
This push-button resets the alarm condition as soon as it is pressed and released. Unit will try to restart. If the alarm condition persists unit will trip again. Don't press during operation of the unit, because during restart the output is off for a short time.

Set Current Limit
The output current limit can be set by this single turn potentiometer on the top of the unit.

Top view

All dimensions in mm
$1 \mathrm{TE}=1 \mathrm{U}=5,08 \mathrm{~mm}$
$1 \mathrm{HE}=1 \mathrm{U}=44,45 \mathrm{~mm}$

Bottom view

Internal electrical options

T Temperature controlled output voltage

By using an additional external resistor, NTC or PTC connected to a sense line of the unit, the output voltage can be programmed. e. g. for temperature controlled charging of batteries.

WA / ZA

Boost charge

With actuation of an external switch the output voltage becomes higher especially for boost charge. The system comes back in float operation manually or automatically by a time relay (ZA).

WP / ZP

Battery check

With actuation of an external switch the output voltage is programmed down example to $1,90 \%$ cell. Therefore the load is supplied by the Battery. The system comes back in float operation manually or automatically by a time relay (ZP).

External electrical options, additional mechanic options necessary

A Drop down diodes

Through external diodes the output voltage is programmed to the specified load voltage. With battery discharging the diodes are automatically by-passed.

CE Additional input capacitors

To extend the carry-over-time at mains fail.
CA Additional output capacitors
To extend the carry-over-time or for releasing fuse elements
P Battery monitoring and total discharge protection
An additional circuit is monitoring the battery voltage in case of mains fail. Typical at 80% of the nom. battery voltage, a deep discharge protection relay interrupt the connection to the load.

SE/SA Circuit breaker at the input and / or output

E Earth leakage protection module
J Main switch
Y Measuring instruments (V, A etc.)

Configurations

19"- racks BGT- series

aluminum racks with conductive chromates surfaces. Incl. installed unit guiding and already connected mating plugs. Unused plug in slots or empty space on the front is covered by aluminum "blind-" plates.

Order no.: BGT 231-...
For $1 \times$ PSI 1200, electrical options please s. page 6.
Ready- for- use the connectors are wired to terminals on the rear side.

Order no.: BGT 232-...

For $2 \times$ PSI 1200, electrical options upon request, please s. page 6 Ready-for- use the connectors are wired to terminals on the rear side.

Depth: 380 mm

Depth: 380 mm up to 470 mm (depends on options)

Depth: 380 mm up to 470 mm (depends on options)

DDepth: 380 mm up to 470 mm (depends on options)

Mounting plate / Option - M

series PSI 1200 mounted on a wall mounting plate. The converter is fixed by $4 \times \mathrm{M} 5$ screws; the mechanical realisation is made in protection class IP00.

Order no.: PSI 1200-M10 (connection on terminals, optional with int. Fuse)

all dim. in mm
$1 \mathrm{TE}=1 \mathrm{U}=5,08 \mathrm{~mm}$
$1 \mathrm{HE}=1 \mathrm{U}=44,45 \mathrm{~mm}$

Projects

Train application for stationary battery
charging at $16^{2} /{ }_{3} \mathrm{~Hz}$

BGT 252 in cabinet
Units:
2 x PSI 1200/36
($2 \times 40,5 \mathrm{VDC} / 2 \times 25 \mathrm{~A}$)
Options:

$2 \times \mathrm{N}$	Mains fail alarm
$2 \times \mathrm{CE}$	$16^{2} / 3 \mathrm{~Hz}$-operation
$2 \times \mathrm{J}$	Main switch
$2 \times \mathrm{Y}$	Dig. measuring $\mathrm{V}+\mathrm{A}$

Redundant 24VDC- supply

BGT 232
$2 \times$ PSI 1200/24
($2 \times 24 \mathrm{VDC} / 2 \times 40 \mathrm{~A}$)
Options: CA additional output cap. to Extend carry-over-time
$2 \times$ SSE Circuit breaker at the input with auxiliary contacts
$4 \times$ SSA Circuit breaker at the output with auxiliary contacts
$2 \times \mathrm{N} \quad$ Mains fail alarm

